# Примеры вопросов из теста "Суперкомпьютеры" (2016)

Давалось 20 вопросов на 30 минут Пользоваться можно чем угодно

В системе sigma пропускать вопросы, чтобы потом вернуться - нельзя (просто пропустить вопрос тоже нельзя)

Итоговая оценка складывается из 2-х оценок за праки и оценки за тест, но если тест на 2, то и итоговая 2, округление в пользу студента, но с учётом статистики посещения лома и джинни.

Господа, может обсудим ответы на эти вопросы? старайтесь выбрать свой фоновый цвет, чтобы не сливаться друг с другом

при возможности оставляйте обоснование своему ответу

# Ломоносов и BG, архитектура компьютеров:

- 1) Какой будет архитектура большинства вновь создаваемых суперкомпьютеров? (гибридной, это модно и интересно/как блюджин/еще какой-то вариант) гибридной
- 2) сколько соседей у узлов ВС

6

- Где в блюджин используется топология/информационная сеть "дерево" вроде как при коллективных операциях MPI
- 4) у Blue Gena максимально 4 потока на узле? да, см. сл вопрос
- 5) Сколько потоков в процессоре, который стоит в блюджине (видимо речь об узле?)

4

- 6) Blue Gene: при каком методе запуска доступно больше всего памяти:
  - SMP
  - Dual
  - VN
  - всем одинаково

SMP? если имеется в виду "доступной одному процессу", то SMP

Ну да, в этом главный вопрос

http://hpc.cmc.msu.ru/bgp/jobs/modes - цитата:

В каждом из режимов MPI-процессам доступен приблизительно следующий объем памяти:

VN — 472 МБ

DUAL — 978 МБ

SMP — 1992 МБ

это на процесс. Если запускать с числом узлов N при разном кол-ве процессов, то у тебя на каждом узле 2гб памяти и будет одинаково всегда. Так что, грубо говоря, вопрос фиксируешь ты кол-во процессов или узлов при запуске в разных режимах. Либо вопрос вообще про память на 1 процесс и тогда то, что выделено зеленым верно.

7) был вопрос про архитектуру Ломоносова

| BO∏POC №17                                                                                                                        |  |
|-----------------------------------------------------------------------------------------------------------------------------------|--|
| Максимальный объем доступной памяти достигается при запуске паралллельных программ на Blue Gene/P в режиме:                       |  |
| не зависит от режима запуска                                                                                                      |  |
| □ DUAL                                                                                                                            |  |
| SMP                                                                                                                               |  |
| □ VN                                                                                                                              |  |
| Ответить                                                                                                                          |  |
| BO∏POC №11                                                                                                                        |  |
| Коммуникационная сеть «дерево» Blue Gene/Р используется для:                                                                      |  |
| для доступа к файловой системе                                                                                                    |  |
| выполнения 2-ух точечных передач большого объема                                                                                  |  |
| выполнения коллективных операций МРІ при соблюдении определенных условий                                                          |  |
| <ul><li>■ выполнения любых коллективных операций MPI</li></ul>                                                                    |  |
| Ответить                                                                                                                          |  |
| 3? или 4? "Используется для коллективных операций и коммуникатора WORLD",                                                         |  |
| <mark>нто скорее 3</mark>                                                                                                         |  |
| BO∏POC №16                                                                                                                        |  |
| С каким количеством процессоров непосредственно связан каждый вычислительный узел Blu<br>Gene/ коммуникационной сетью «решетка» : |  |
| _ 6                                                                                                                               |  |
| _ 16                                                                                                                              |  |
| □ 8                                                                                                                               |  |
| □ 128                                                                                                                             |  |
| _ 4                                                                                                                               |  |
|                                                                                                                                   |  |

6. Ну тор, все дела

| BO∏POC №19                                                                                                                                                   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Почему явные итерационные методы успешны для решения задачи на собственные значения на<br>суперкомпьютере BlueGene/P?                                        |  |
| □ Неявные итерационные методы показывают более низкую точность вычислений.                                                                                   |  |
| <ul> <li>Существуют эффективные методы распараллеливания перемножения матрицы на вектор с учетом параллельного быстрого<br/>преобразования Фурье.</li> </ul> |  |
| Для прямых методов нельзя эффективно использовать параллельное быстрое преобразование Фурье.                                                                 |  |
| 2?                                                                                                                                                           |  |
| BORPOC N≥2                                                                                                                                                   |  |
| Выберите верные (-ое) утверждения (-е):                                                                                                                      |  |
| □ C/к "Ломоносов" имеет гибридную архитектуру                                                                                                                |  |
| □ Вычислительные узлы IBM Blue Gene.IP имеют двунаправленные связи с шестью соседями                                                                         |  |
| □ IBM Blue Gene/P позводяет залускать программы с использованием GPU                                                                                         |  |
| □ Домашний каталот каждого пользователя с\к "Ломоносов" виден на любом вычислительном узле                                                                   |  |
| Ответить                                                                                                                                                     |  |
|                                                                                                                                                              |  |
| без 4 вроде, потому что на parallel.ru есть такое:                                                                                                           |  |
| 1. Быстрое хранилище (tier $1$ ) – предназначено для проведения расчетов.                                                                                    |  |
| 2.Основное хранилище (tier 2) – предназначено для хранения рабочих даннь                                                                                     |  |
| пользователя (например данные проекта над которым пользователь работает                                                                                      |  |
| данный момент)                                                                                                                                               |  |
| 3.Хранилище архивных данных (tier 3) – предназначено для хранения данны:                                                                                     |  |
| которые в данный момент пользователю не нужны, но понадобятся в будущем, хранения архивов данных.                                                            |  |
| Домашняя директория пользователя (/home/users/\$user) расположена на быстро<br>хранилище (tier 1).                                                           |  |
| Важно:доступ с вычислительных узлов на основное хранилище (tier 2) ил                                                                                        |  |
| хранилище архивных данных (tier 3) невозможен. <mark>Тоже думаю, что без 4.</mark><br><mark>Ок: 1,2</mark>                                                   |  |
| BORPOC №15                                                                                                                                                   |  |
| максимальное число потоков, которые можно запустить на одном узле Blue Gene/P:                                                                               |  |
| □ 16                                                                                                                                                         |  |
| □ 8                                                                                                                                                          |  |
|                                                                                                                                                              |  |
| □ Число потомов не ограничено                                                                                                                                |  |
| D 2                                                                                                                                                          |  |
| 0.2                                                                                                                                                          |  |
|                                                                                                                                                              |  |

6 4 <mark>Да-да, ошибочка,4</mark> То есть число потоков не ограничено? Имеется в виду 4 потока, а вариант ответа 3

#### Спасибо

| □ rns          | вное - максимальная теоретическая производительность в Гфлопс-ах.                                                                      |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------|
| □ Им<br>работа | еть высокую пропускную способность подсистемы памяти - память должна успевать предоставлять процессору данные, над которыми он<br>нет. |
| □ No           | иеть ках можно больше однородных ядер - чтобы можно было эффективно распараллеливать алгоритм.                                         |
| 0 0            | беспечивать широкие возможности SIMD-ификации кода - использование векторизации дает большой реальный эффект.                          |
|                | то зависит от конкретного приложения - у всех разные требования.                                                                       |

5

# Ресурс параллелизма, сложность алгоритмов:

- 1) Сложность алгоритма перемножения плотных прямоугольных матриц? ответ O(N^3)
- 2) Вычислительная сложность перемножения квадратных плотных матриц: o(n),o(NN),o(nnn), нет правильного ответа ( у меня была вычислительная Мощность)

мощность - O(N)?

Сложность плотных - О(N^3)

Это сложность такая, мощность = сложность/объем входных-выходных данных А тыртышников говорил, что матрицы за N^log\_2(7) перемножаются...

Ну в теории они вообще за  $N^2$  перемножаются, но на практике получается  $N^2(2.38)$ ):

# <mark>ФЛУДИЛК</mark>А

че вы хотите от поповой. она может еще мощность со сложностью сама перепутала

автограф в зачетке и ведомости хотим. тогда обязательно посмотри в конце что жирным шрифтом выделено в параметрах sbatch Affinity/Multi-core options? В конце этого гугл дока, внимательней!!! Подумой!!! ох петросянчик (ЖЖ((

интересно, каковы шансы, что вопросы будут те же самые?

50/50, раз не знаем, то энтропия максимальна, значит распределение равномерное. Это не равномерное распределение, равномерное - непрерывное, а это дискретное

ну эти наверное не удалят, но добавят новые

всем удачи спасибо

- 3) вид параллелизма в двойном цикле
- конечный
- координатный
- скошенный
- нет верного ответа

| BO∏POC №7                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Каким параллелизмом обладает фрагмент программы:                                                                                                                                           |
| for(i=1; i<=n; ++i)<br>for(j=1; j<=m; ++j)<br>A[i][j] = (A[i-1][j] * A[i][j-1])/2;                                                                                                         |
| не обладает                                                                                                                                                                                |
| другим                                                                                                                                                                                     |
| скошенным                                                                                                                                                                                  |
| конечным                                                                                                                                                                                   |
| координатным                                                                                                                                                                               |
| <mark>скошенный?</mark>                                                                                                                                                                    |
| +++                                                                                                                                                                                        |
| BORPOC Ne16                                                                                                                                                                                |
| Каков порядок вычислительной мощности алгоритма перемножения плотных квадратных матриц?                                                                                                    |
| □ o(n²2)                                                                                                                                                                                   |
| прави/аного ответа нет                                                                                                                                                                     |
| □ o(1)                                                                                                                                                                                     |
| D o(ms)                                                                                                                                                                                    |
| □ on                                                                                                                                                                                       |
| O(n)+                                                                                                                                                                                      |
| BOΠPOC №14                                                                                                                                                                                 |
| Какое свойство процессора наиболее важно для вычислительных задач?                                                                                                                         |
| <ul> <li>Обеспечивать широкие возможности SIMD-ификации кода - использование векторизации дает большой реальный эффект.</li> </ul>                                                         |
| □ Главное - максимальная теоретическая производительность в Гфлопс-ах.                                                                                                                     |
| □ Иметь высокую пропускную способность подсистемы памяти - память должна успевать предоставлять процессору данные, над которыми он работает.                                               |
| □ Иметь как можно больше однородных ядер - чтобы можно было эффективно распараллеливать алгоритм.                                                                                          |
| это зависит от конкретного приложения - у всех разные требования.                                                                                                                          |
| <del>5</del> +                                                                                                                                                                             |
| Сопряженные градиенты и скорейший спуск, разбиение сетки:                                                                                                                                  |
| 1) название метода и типа что это за метод, например метод скорейшего спуска                                                                                                               |
| 2) является ли метод сопряженных градиент обобщением метода скор спуска?                                                                                                                   |
| BO∏POC №4                                                                                                                                                                                  |
| Краевая задача: $ \begin{cases} -\frac{\partial u}{\partial x^2} - \frac{\partial u}{\partial y^2} = f(x,y), & (x,y) \in D, \\ u(x,y) = \varphi(x,y), & (x,y) \in \partial D \end{cases} $ |
| □ является смешанной краевой задачей для уравнения параболического типа                                                                                                                    |
| является задачей Дирихле для уравнения Пуассона                                                                                                                                            |
| является задачей Трикоми для уравнения Бицадзе-Самарского                                                                                                                                  |

является задачей Неймана для уравнения Лапласа

Ответить

# По идее 2, но тут немного не такой оператор лапласа.

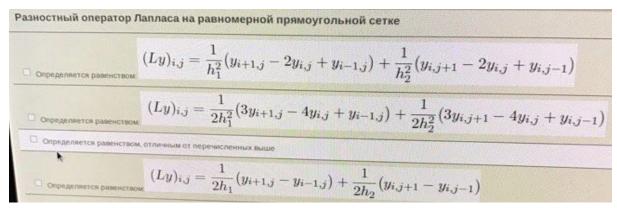
Это оператор лапласа со знаком минус, и 2 верно. Я про то, что там сверху не du, d^2 и должно быть, не?Хм, да, действительно, но больше похоже на их опечатку (составителей теста/книги), чем на то, что так было задумано. Ну просто это скрин же откуда-то (из книги/статьи).Варианта "не является задачей", увы,не предусмотрено. Ну ок, остановимся на 2.

|                    | нным методом проекционного типа, предназначенным для решения системы линейных алгебраических уравнений (СЛАУ) с<br>ельно определенной матрицей |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| является обобщени  | вем алгоритма метода скорейшего спуска                                                                                                         |
| сходится к точному | решению любой системы линейных алгебраических уравнений с квадратной невырожденной матрицей                                                    |

# 3? Вроде бы матрица должны быть симметричной и положительно определенной, а не только невырожденной. Может 1?

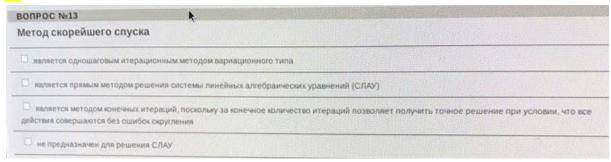
Судя по всему на последующий 2-х изображениях один и тот же вопрос, то есть "перечисленных выше" значит "перечисленных и выше и ниже"

| ВОПРОС №6                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------|
| Двухмерный алгоритм разбиения прямоугольной области имеет преимущество над одномерным вариантом разбиения, поскольку |
| позволяет существенно уменьшить общий объем трансакций в процессе взаимодействия вычислительных узлов                |
| позволяет значительно уменьшить объем оперативной памяти, необходимой каждому вычислительному узлу                   |
| не обладает ни одним из перечисленных выше свойств                                                                   |
| позволяет существенно уменьшить объем вычислительной работы, который должен выполнить каждый процесс                 |


# ^ 1 (так как обмениваться нужно границами, а тут граница совпадает со всей подобластью [линия]. в итоге вся сетка гоняется)

| 28                                                                                                                                                                                                      | ости имеет преимущество над одномерным вариантом преимущество над одномерным вариантом преимой каждому вычислительному узлу                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                         | оти имеет преимущество                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| помоугольной обла                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| опрос мея                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| вухмерный алгорич                                                                                                                                                                                       | ом омелительному узлу                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| вухмерный альту<br>азбиения, поскольку                                                                                                                                                                  | римой каждому выгакол                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| объем оперативной памяти, ост                                                                                                                                                                           | осоительных узлов                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| вухмерный алгоритм разочения<br>азбиения, поскольку<br>позволяет значательно уменьшить объем оперативной памяти, необход                                                                                | е взаимодействия вычистительно                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| позволяет значительно уменьшить объем оперативной памяти, необход  позволяет существению уменьшить общий объем трансакций в процесси  позволяет существению уменьшить объем вычислительной работы, кото | Danouecc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| X возроляет существенно уменьшить обще                                                                                                                                                                  | улый должен выполнить каждын преч                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ва на върделительной работы, кото                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| эмперат существению уменьшить объем оп                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| не обладает на одним из перечисленных выше свойств                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| поречисленных выше чест                                                                                                                                                                                 | AND THE RESIDENCE OF THE PROPERTY OF THE PROPE |

# **1? скорее 2**


А, перепутал. Я тоже за 2. Вот тут

https:/я/drive.google.com/drive/folders/0B0X-oQW4pjUUd2htak5UUWFsemc на второй картинке об этом.



# <mark>1?</mark>вроде да да

дa



# 1?

#### вроде да

#### CUDA:

- 1) Про cuda kernel<<< >>> найти верные сигнатуры запуска, какие будут параметры запуска
- 2) Для каких задач используются графические ускорители:
  - -обработка видео
  - -обработка изображений
  - -общие вычисления
  - -обращения к файловой системе
  - -программирование рекурсивных функций
- 3) Укажите верные утверждения:
  - -cuda расширение c/c++ +
  - -cuda специально для nvidia sad but true, vendor lock
  - -cuda это расширение Fortran
- cuda теперь вообще поверх LLVM идёт, какой хочешь фронтенд теперь пиши, хоть NodeJS
  - 4) CUDA только для nvidia ГПУ AMD вроде всё держится за OpenCl

Upd: не все GPU, proof: <a href="https://developer.nvidia.com/cuda-gpus">https://developer.nvidia.com/cuda-gpus</a>, тут говорят только про

- 5) Какие опции команды sbatch позволяют ограничить количество выделенных GPU-карт при выбранном определенном количестве узлов?
  - -gpu 1
  - -p gpu 1

- -s gpu 0
- используются все GPU

все GPU?<mark>++</mark> вроде да

- 6) Фрагмент кода:
  - строка1- cudaMemcpyAsync(arr1, arr2, count, cudaMemcpyHostToDevice, st1); строка2- kernel«count / 256, 256, 0, st2 »(arr1, arr3, count); строка3- cudaMemcpyAsync(arr2, arr1, count, cudaMemcpyDeviceToHost, st1);
  - могут выполниться параллельно строки 1,3 и строка 2?
  - строка3 выполняется после строки1
- 7) Про cuda memcpyasync: откуда куда пересылка данных; указать правильные утверждения про вызов cudaMemcpy(ar1, ar2, count, cudaMemcyHostToDevice)

На последующих 2-х изображениях есть разница в коде. Вообще у Колганова много похожих, но немного отличающихся вопросов.

Выберете все верные утверждения относительно следующего кода, при условии, что st1, st2 отличны от потока по умолчанию, а ядро меняет массив arr1: 
строка1- cudaMemcpy (arr1, arr2, count, cudaMemcpyHostToDevice); 
строка2- kernel<<<count / 256, 256, 0, st2 >>>(arr1, arr3, count); 
строка3- cudaMemcpyAsync(arr2, arr1, count, cudaMemcpyDeviceToHost, st1);

ядро выполнится параллельно с компированием в строке3

копирование в строке3 выполнится только после копирования в строке1

ядро выполнится только после завершения копирования в строке1

значения элементов массива arr2 после завершения функции в строке3 будут совпадать со значениями элементов массива arr1, полученные после завершения функции в строке1

значения элементов массива arr2 после завершения функции в строке3 будут совпадать со значениями элементов массива arr1, полученные после завершения функции в строке2

9

#### 1,4? Или без 4?

вроде без 4, потому что одновременно выполняется ядро, где меняется arr1, и копируется arr1 в arr2.

без 4 5. Так как 2 и 3 строки запущены в разных потоках, а kernel мутирует arr1. Поэтому в третьей строке может быть скопирована рандомная белиберда.

2,3 почему не подходят? первая строка же вроде бы синхронная операция, которая блокирует все потоки?

Да,точно, чёт думал там Async

В итоге 1,2,3

| Выберете все верные утверждения относительно следующего кода, при условии, что st1, st2 отличны от потока по умолчанию, а ядро меняет массив arr1:<br>строка1- cudaMemcpyAsync(arr1, arr2, count, cudaMemcpyHostToDevice, st1);<br>строка2- kernel<< <count 0,="" 256,="" st2="">&gt;&gt;(arr1, arr3, count);<br/>строка3- cudaMemcpyAsync(arr2, arr1, count, cudaMemcpyDeviceToHost, st1);</count> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| □ Значения элементов массива ал? после завершения функции в строкеЗ будут совладать со значениями элементов массива ал1 , полученные после завершения функции в строке2                                                                                                                                                                                                                             |
| ядра выполнится параллельно с компированиями в строке1 и строке3                                                                                                                                                                                                                                                                                                                                    |
| ядро выполнится только после завершения копирования в строке1                                                                                                                                                                                                                                                                                                                                       |
| жопирование в строке 3 выполнится только после копирования в строке 1                                                                                                                                                                                                                                                                                                                               |
| Значения элементов массива алг после завершения функции в строкез будут совпадать со значениями элементов массива алг 1 полученные после                                                                                                                                                                                                                                                            |
| <mark>2,4?</mark> + верно второе, там поток st1 != st2 <mark>Понял, спасибо</mark>                                                                                                                                                                                                                                                                                                                  |
| Отметьте все верные утверждения про данный запуск ядра:<br>Kernel<<<512, dim3(32, 4), 0, 0>>>();                                                                                                                                                                                                                                                                                                    |
| 🗷 ядро будет использовать 128 нитей                                                                                                                                                                                                                                                                                                                                                                 |
| □ Запуск ядра выполнится асинхронно                                                                                                                                                                                                                                                                                                                                                                 |
| □ ядро будет использовать 256 * 256 нитей                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
| □ Запуск ядра выполнится синхронно                                                                                                                                                                                                                                                                                                                                                                  |
| ядро будет использовать 512 нитей                                                                                                                                                                                                                                                                                                                                                                   |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                         |
| В основном графические ускорители применяются для:                                                                                                                                                                                                                                                                                                                                                  |
| ✓ обработки видео                                                                                                                                                                                                                                                                                                                                                                                   |
| ✓ обработки изображений                                                                                                                                                                                                                                                                                                                                                                             |
| при написания рекурсивных алгоритмов                                                                                                                                                                                                                                                                                                                                                                |
| райлового ввода вывода                                                                                                                                                                                                                                                                                                                                                                              |
| работы с базами данных                                                                                                                                                                                                                                                                                                                                                                              |
| вычислений общего назначения                                                                                                                                                                                                                                                                                                                                                                        |

-для игр гонять нейронки, зарабатывать на кеггле резюме и призовые фонды лол,много уже на кэгле заработал(призовых фондов)?

а для общего назначения? матрицы ж на нём тоже неплохо множатся

просто тут не сказано типа для того, что хорошо параллелится. Матрицы параллелятся, но есть типа много чего, что на проце гораздо быстрей из-за кешей (и не параллелится).

Короче в любом случае под вопросом это

| 0          | тметьте все неверные конфигурации запуска ядра:                                                                              |
|------------|------------------------------------------------------------------------------------------------------------------------------|
|            | kernel<<<75, 0, 0, 0>>>()                                                                                                    |
|            | kernel<<< dim3(5, 55, 1, 1), dim3(32, 4), 0, 0>>>()                                                                          |
| V          | kernel<<< dim3(-11), dim3(1), 0>>>()                                                                                         |
|            | kernel<<<1, 1024>>>()                                                                                                        |
|            | kernel<<< dim3(13, 55, 1), dim3(32, 5, 4), 0>>>()                                                                            |
| 2,3        | Почему 2? Конструктор dim3(5,55,1,1) скорее всего упадет, потому что 4 параметра.                                            |
| -          | по этой логике отметил                                                                                                       |
|            | · Можно ли запускать с нулем нитей? Просто не запуститься                                                                    |
| Ю          | <mark>гда?</mark>                                                                                                            |
| <b>(</b> p | <mark>ен его знает, cuda host арі толком нигде не прописан, nvidia</mark>                                                    |
| 10         | <mark>лжна была закрыться со стыда от такой хуйни</mark>                                                                     |
|            |                                                                                                                              |
|            | акие опции команды sbatch позволяют ограничить количество выделенных GPU-карт при<br>ыбранном определенном количестве узлов? |
|            | никакими, нам будут доступны все GPU-карты, выделенных задаче узлов.                                                         |
|            | -gpu 1                                                                                                                       |
|            | -s gpu 0                                                                                                                     |
|            | -p gpu 1                                                                                                                     |
| ?          |                                                                                                                              |
| (          | Отметьте все верные конфигурации запуска ядра:                                                                               |
|            | kernel<<< dim3(5, 1, 1), dim3(32, 4), 0, 0>>>0                                                                               |
|            | □ kernel<<< dim3(5, 78), dim3(2,5,11), 0>>>()                                                                                |
|            | kernel<<<16, dim3(1, 50, 80), 0>>>0                                                                                          |
|            | kernel<<<1,1,5,-1>>>0                                                                                                        |
|            | kernel<<<0, 45, 0, 0>>>0                                                                                                     |
| _          |                                                                                                                              |

1,2,3 +

Опять же, можно ли как с 0 блоками запустить (как в 5 варианте)?

| опрос №1<br>Этметьте все верные факты про технологию CUDA:                                           |                                                   |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| UCUDA является расширением стандартного языка Forban                                                 |                                                   |
| □ CUDA является новым языком программирования на базе С/C++                                          |                                                   |
| <ul> <li>Это програмено-аппаратная архитектура параллельных вычислений, подволющим значи.</li> </ul> | тельно ускорить нод с использованием любых GPU.   |
| CVDA нагиется расширенном стандартных языков Java/Call-yout                                          |                                                   |
| □ CUDA желяется расширежием стандартных языков С/С++                                                 |                                                   |
| <ul> <li>Это программно-эппаратная архитектура параллельных вычислений, праволяющая знач</li> </ul>  | ительно усворить код с использованием GPU hyvidia |
|                                                                                                      |                                                   |

3,5,6? CUDA есть на Fortran, C/C++ и является технологией NVidia <mark>То есть 1,5,6 или как?1,5,6</mark>

В лекциях не было про фортран, кто как думает надо ответить? CUDA вообще на LLVM есть, пиши фронтенд и будет тебе счастье <a href="https://developer.nvidia.com/cuda-llvm-compiler">https://developer.nvidia.com/cuda-llvm-compiler</a>

# Можно по человечески?

| BORPOC N/8                                                                                                         |          |
|--------------------------------------------------------------------------------------------------------------------|----------|
| Отметьте все верные факты про вызов данной функции cudaMemcpyAsync(array2, array1, count, cudaMemcpyHostToDevice): |          |
| ☐ Konupyerca count 6aihr                                                                                           |          |
| Операция асиноронна, выполняется в потоке stream                                                                   |          |
| □ Происходит колирование данных с ГПУ на ЦПУ                                                                       |          |
| <ul> <li>Происходит колирование данных с ГПУ на ГПУ</li> </ul>                                                     |          |
| □ Происходит копирование данных из массива аттау1 в массив аггау2                                                  | <b>*</b> |
| □ Происходит копирование данных с ЦПУ на ГПУ                                                                       |          |
| Осерация асиноронна, выполняется в потоке по умолчанию                                                             |          |
| Проискодит копирование данных из массива аггау2 в массив аггау1                                                    |          |
|                                                                                                                    |          |

1,5,6,7+

# Турбулентность:

- 1) Что такое число Рейнольдса (отношение вязкости к инерции как-то так) --- **или инерции к вязкости**
- 2) Причина возникновения турбулентности
- 3) коеффициент рейнольдса? вязкость и инерция
- 4) Какие уравнения используются для описания осредненных характеристик турбулентных течений? навье-стокс? Рейнолдса?

| Укажите правильный (правильные) ответ(ответы):                                                   |
|--------------------------------------------------------------------------------------------------|
|                                                                                                  |
| ○ Метод прямого численного моделирования (DNS) разрешает все возможные пространственные масштабы |
| □ LES моделирует все возможные пространственные масштабы                                         |
| □ LES моделирует только достаточно крупные вихревые структуры                                    |

<mark>2,4?</mark> Вроде да

| Что является причиной возникновения турбулентности? |  |  |
|-----------------------------------------------------|--|--|
| Пидродинамические неустойчивости                    |  |  |
| Политическая нестабильность на ближнем востоке      |  |  |
| Случайные внешние силы                              |  |  |

3?<mark>1</mark>

И то , и то мб? скорее всего и то, и то. На вики написано про 3, вот тут (http://old.icad.org.ru/docs/1.pdf) нашла про 1.

| вопрос №12<br>Какие уравнения используются д | ля описания осредненных характеристик турбулентных течений? |
|----------------------------------------------|-------------------------------------------------------------|
| <ul> <li>Уравнения Рейнольдов.</li> </ul>    |                                                             |
| <ul> <li>Уравнения Навые-Стоков.</li> </ul>  |                                                             |
| — Уравнения Эйлера                           |                                                             |

По вики, Уравнения Рейнольдса (англ. RANS (Reynolds-averaged Navier-Stokes)) — уравнения Навье — Стокса (уравнения движения вязкой жидкости), осреднённые по Рейнольдсу.

# Квантовая (молекулярная) динамика:

- 1) Атомы и электроны, квантовые коды молекулярной динамики, указать соотношение между величинами М(число электронов) и N(число коэффициентов быстрого преобразования Фурье)
  - ~N
  - ~N^4
  - ~N^3
- 2) в каком методе в квантовой динамике скрыто главное ограничение масштабируемости? матрица перектытия, фурье или перемножение матрицы на вектор?

| В каком численном методе, используемом в коде квантовой молекулярной динамики, скрыто главное ограничение масштабируемости? |  |
|-----------------------------------------------------------------------------------------------------------------------------|--|
| Быстрое преобразование Фурье                                                                                                |  |
| Перемножение матрицы на вектор                                                                                              |  |
| Вычисление матрицы перекрытия                                                                                               |  |

1?точно 1, поскольку в пересдаче был вопрос "почему бфп - главное ограничение масштабируемости на bluegene"

Еще мнения?

Какова масштабируемость кодов квантовой молекулярной динамики на основе теории функционала плотности в зависимости от количества атомов?

Если считать, что N - количество электронов, а M - количество базисных векторов в разложении Фурье, и M пропорционально N.

N
N3

# Говорят, что N, но без обоснований

# Это что вообще за хуйня?

Странно, что наверное масштабируемость должна расти при увеличении кол-ва электронов и при большем кол-ве базисных векторов. Как-то логически кажется, что должно быть от N^2 и больше

# Был еще какой-то вопрос на локальность данных, которого здесь нет.

О чем примерно?

У меня он описан как "локальность по времени? по данным?" Конкретнее, увы, не могу сказать.

### Это типа help по sbatch

Parallel run options:

-A, --account=name charge job to specified account --begin=time defer job until HH:MM MM/DD/YY

-c, --cpus-per-task=ncpus number of cpus required per task

--comment=name arbitrary comment

-d, --dependency=type:jobid defer job until condition on jobid is satisfied

-D, --workdir=directory set working directory for batch script

-e, --error=err file for batch script's standard error

--export[=names] specify environment variables to export

--export-file=file|fd specify environment variables file or file descrip

tor to export

--get-user-env--gid=group\_idload environment from local cluster-group ID to run job as (user root only)

--gres=list required generic resources-H, --hold submit job in held state

-i, --input=in file for batch script's standard input

-I, --immediate exit if resources are not immediately available

--jobid=id run under already allocated job

-J, --job-name=jobname name of job

-k, --no-kill do not kill job on node failure

-L, --licenses=names required license, comma separated

#### -P, --popova start nedikvatniy course and add gorelye gopi to students

-m, --distribution=type distribution method for processes to nodes

(type = block|cyclic|arbitrary)

-M, --clusters=names Comma separated list of clusters to issue

commands to. Default is current cluster.

Name of 'all' will submit to run on all clusters.

--mail-type=type notify on state change: BEGIN, END, FAIL or ALL

--mail-user=user who to send email notification for job state

changes

-n, --ntasks=ntasks number of tasks to run

--nice[=value] decrease scheduling priority by value

--no-requeue if set, do not permit the job to be requeued --ntasks-per-node=n number of tasks to invoke on each node

-N, --nodes=N number of nodes on which to run (N = min[-max])

-o, --output=out file for batch script's standard output

-O, --overcommit overcommit resources -p, --partition=partition partition requested

--propagate[=rlimits] propagate all [or specific list of] rlimits

--qos=qos quality of service

-Q, --quiet quiet mode (suppress informational messages)

--requeue if set, permit the job to be requeued

-t, --time=minutes time limit

--time-min=minutes minimum time limit (if distinct)

-s, --share share nodes with other jobs

--uid=user\_id user ID to run job as (user root only)

-v, --verbose verbose mode (multiple -v's increase verbosity)

--wrap[=command string] wrap commmand string in a sh script and submit

--switches=max-switches{@max-time-to-wait}

Optimum switches and max time to wait for optimum

#### Constraint options:

--contiguous demand a contiguous range of nodes

-C, --constraint=list specify a list of constraints

-F, --nodefile=filename request a specific list of hosts--mem=MB minimum amount of real memory

--mincpus=n minimum number of logical processors (threads) per

#### node

--reservation=name allocate resources from named reservation

--tmp=MB minimum amount of temporary disk -w, --nodelist=hosts... request a specific list of hosts -x, --exclude=hosts... exclude a specific list of hosts

# Consumable resources related options:

--exclusive allocate nodes in exclusive mode when cpu consumable resource is enabled

--mem-per-cpu=MB maximum amount of real memory per allocated cpu required by the job.

--mem >= --mem-per-cpu if --mem is specified.

Affinity/Multi-core options: (when the task/affinity plugin is enabled)

-B --extra-node-info=S[:C[:T]] Expands to:

- --sockets-per-node=S number of sockets per node to allocate
- --cores-per-socket=C number of cores per socket to allocate
- --threads-per-core=T number of threads per core to allocate each field can be 'min' or wildcard '\*' total cpus requested =  $(N \times S \times C \times T)$
- --ntasks-per-core=n number of tasks to invoke on each core
- --ntasks-per-socket=n number of tasks to invoke on each socket

Help options:

222 -h, --help show this help message -u, --usage display brief usage message

Other options:

-V, --version output version information and exit

-P, --popova start neadikvatniy course and add gorelye gopi to students,+1